1. <ul id="0c1fb"></ul>

      <noscript id="0c1fb"><video id="0c1fb"></video></noscript>
      <noscript id="0c1fb"><listing id="0c1fb"><thead id="0c1fb"></thead></listing></noscript>

      99热在线精品一区二区三区_国产伦精品一区二区三区女破破_亚洲一区二区三区无码_精品国产欧美日韩另类一区

      RELATEED CONSULTING
      相關(guān)咨詢
      選擇下列產(chǎn)品馬上在線溝通
      服務(wù)時間:8:30-17:00
      你可能遇到了下面的問題
      關(guān)閉右側(cè)工具欄

      新聞中心

      這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
      nosql重復(fù)判斷,nosql最終一致性

      目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點

      特點:

      我們提供的服務(wù)有:成都做網(wǎng)站、網(wǎng)站制作、微信公眾號開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認證、魚臺ssl等。為成百上千家企事業(yè)單位解決了網(wǎng)站和推廣的問題。提供周到的售前咨詢和貼心的售后服務(wù),是有科學(xué)管理、有技術(shù)的魚臺網(wǎng)站制作公司

      它們可以處理超大量的數(shù)據(jù)。

      它們運行在便宜的PC服務(wù)器集群上。

      PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

      它們擊碎了性能瓶頸。

      NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

      “SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

      沒有過多的操作。

      雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

      Bootstrap支持

      因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

      優(yōu)點:

      易擴展

      NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。

      大數(shù)據(jù)量,高性能

      NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

      靈活的數(shù)據(jù)模型

      NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

      高可用

      NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。

      主要應(yīng)用:

      Apache HBase

      這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

      Apache Storm

      用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。

      Apache Spark

      該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。

      Apache Hadoop

      該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

      Apache Drill

      你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

      Apache Sqoop

      也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

      Apache Giraph

      這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

      Cloudera Impala

      Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

      Gephi

      它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。

      MongoDB

      這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

      十大頂尖公司:

      Amazon Web Services

      Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

      Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

      Cloudera

      Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

      Hortonworks

      和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

      IBM

      當(dāng)企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗。“IBM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)。”

      Intel

      和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

      MapR Technologies

      MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。

      Microsoft

      微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

      微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠的路要走。”

      Pivotal Software

      EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

      Teradata

      對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

      AMPLab

      通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜纾@也正是AMPLab所做的。AMPLab致力于機器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學(xué)進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。

      什么是New SQL?分析NewSQL是如何融合NoSQL和RDBMS兩者的優(yōu)勢

      NewSQL是對一類現(xiàn)代關(guān)系型數(shù)據(jù)庫的統(tǒng)稱,這類數(shù)據(jù)庫對于一般的OLTP讀寫請求提供可橫向擴展的性能,同時支持事務(wù)的ACID保證。這些系統(tǒng)既擁有NoSQL數(shù)據(jù)庫的擴展性,又保持傳統(tǒng)數(shù)據(jù)庫的事務(wù)特性。NewSQL重新將“應(yīng)用程序邏輯與數(shù)據(jù)操作邏輯應(yīng)該分離”的理念帶回到現(xiàn)代數(shù)據(jù)庫的世界,這也驗證了歷史的發(fā)展總是呈現(xiàn)出螺旋上升的形式。

      在21世紀00年代中,出現(xiàn)了許多數(shù)據(jù)倉庫系統(tǒng) (如 Vertica,Greeplum 和AsterData),這些以處理OLAP 請求為設(shè)計目標(biāo)的系統(tǒng)并不在本文定義的NewSQL范圍內(nèi)。OLAP 數(shù)據(jù)庫更關(guān)注針對海量數(shù)據(jù)的大型、復(fù)雜、只讀的查詢,查詢時間可能持續(xù)秒級、分鐘級甚至更長。

      NoSQL的擁躉普遍認為阻礙傳統(tǒng)數(shù)據(jù)庫橫向擴容、提高可用性的原因在于ACID保證和關(guān)系模型,因此NoSQL運動的核心就是放棄事務(wù)強一致性以及關(guān)系模型,擁抱最終一致性和其它數(shù)據(jù)模型?(如 key/value,graphs 和Documents)。

      兩個最著名的NoSQL數(shù)據(jù)庫就是Google的BigTable和Amazon的Dynamo,由于二者都未開源,其它組織就開始推出類似的開源替代項目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些創(chuàng)業(yè)公司也加入到這場NoSQL運動中,它們不一定是受BigTable和Dynamo的啟發(fā),但都響應(yīng)了NoSQL的哲學(xué),其中最出名的就是MongoDB。

      在21世紀00年代末,市面上已經(jīng)有許多供用戶選擇的分布式數(shù)據(jù)庫產(chǎn)品。使用NoSQL的優(yōu)勢在于應(yīng)用開發(fā)者可以更關(guān)注應(yīng)用邏輯本身,而非數(shù)據(jù)庫的擴展性問題;但與此同時許多應(yīng)用,如金融系統(tǒng)、訂單處理系統(tǒng),由于無法放棄事務(wù)的一致性要求被拒之門外。

      一些組織,如Google,已經(jīng)發(fā)現(xiàn)他們的許多工程師將過多的精力放在處理數(shù)據(jù)一致性上,這既暴露了數(shù)據(jù)庫的抽象、又提高了代碼的復(fù)雜度,這時候要么選擇回到傳統(tǒng)DBMS時代,用更高的機器配置縱向擴容,要么選擇回到中間件時代,開發(fā)支持分布式事務(wù)的中間件。這兩種方案成本都很高,于是NewSQL運動開始醞釀。

      NewSQL數(shù)據(jù)庫設(shè)計針對的讀寫事務(wù)有以下特點:

      1、耗時短。

      2、使用索引查詢,涉及少量數(shù)據(jù)。

      3、重復(fù)度高,通常使用相同的查詢語句和不同的查詢參考。

      也有一些學(xué)者認為NewSQL系統(tǒng)是特指實現(xiàn)上使用Lock-free并發(fā)控制技術(shù)和share-nothing架構(gòu)的數(shù)據(jù)庫。所有我們認為是NewSQL的數(shù)據(jù)庫系統(tǒng)確實都有這樣的特點。

      NoSQL解決方案為什么需要固態(tài)硬盤

      Membase

      Membase 是 NoSQL 家族的一個新的重量級的成員。Membase是開源項目,源代碼采用了Apache2.0的使用許可。該項目托管在GitHub.Source tarballs上,可以下載beta版本的Linux二進制包。該產(chǎn)品主要是由North Scale的memcached核心團隊成員開發(fā)完成,其中還包括Zynga和NHN這兩個主要貢獻者的工程師,這兩個組織都是很大的在線游戲和社區(qū)網(wǎng)絡(luò)空間的供應(yīng)商。

      Membase容易安裝、操作,可以從單節(jié)點方便的擴展到集群,而且為memcached(有線協(xié)議的兼容性)實現(xiàn)了即插即用功能,在應(yīng)用方面為開發(fā)者和經(jīng)營者提供了一個比較低的門檻。做為緩存解決方案,Memcached已經(jīng)在不同類型的領(lǐng)域(特別是大容量的Web應(yīng)用)有了廣泛的使用,其中 Memcached的部分基礎(chǔ)代碼被直接應(yīng)用到了Membase服務(wù)器的前端。

      通過兼容多種編程語言和框架,Membase具備了很好的復(fù)用性。在安裝和配置方面,Membase提供了有效的圖形化界面和編程接口,包括可配置 的告警信息。

      Membase的目標(biāo)是提供對外的線性擴展能力,包括為了增加集群容量,可以針對統(tǒng)一的節(jié)點進行復(fù)制。 另外,對存儲的數(shù)據(jù)進行再分配仍然是必要的。

      這方面的一個有趣的特性是NoSQL解決方案所承諾的可預(yù)測的性能,類準(zhǔn)確性的延遲和吞吐量。通過如下方式可以獲得上面提到的特性:

      ◆ 自動將在線數(shù)據(jù)遷移到低延遲的存儲介質(zhì)的技術(shù)(內(nèi)存,固態(tài)硬盤,磁盤)

      ◆ 可選的寫操作一一異步,同步(基于復(fù)制,持久化)

      ◆ 反向通道再平衡[未來考慮支持]

      ◆ 多線程低鎖爭用

      ◆ 盡可能使用異步處理

      ◆ 自動實現(xiàn)重復(fù)數(shù)據(jù)刪除

      ◆ 動態(tài)再平衡現(xiàn)有集群

      ◆ 通過把數(shù)據(jù)復(fù)制到多個集群單元和支持快速失敗轉(zhuǎn)移來提供系統(tǒng)的高可用性。

      MongoDB

      MongoDB是一個介于關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的產(chǎn)品,是非關(guān)系數(shù)據(jù)庫當(dāng)中功能最豐富,最像關(guān)系數(shù)據(jù)庫的。他支持的數(shù)據(jù)結(jié)構(gòu)非常松散,是類似json的bjson格式,因此可以存儲比較復(fù)雜的數(shù)據(jù)類型。Mongo最大的特點是他支持的查詢語言非常強大,其語法有點類似于面向?qū)ο蟮牟樵冋Z言,幾乎可以實現(xiàn)類似關(guān)系數(shù)據(jù)庫單表查詢的絕大部分功能,而且還支持對數(shù)據(jù)建立索引。它的特點是高性能、易部署、易使用,存儲數(shù)據(jù)非常方便。

      主要功能特性:

      ◆ 面向集合存儲,易存儲對象類型的數(shù)據(jù)

      “面向集合”(Collenction-Oriented),意思是數(shù)據(jù)被分組存儲在數(shù)據(jù)集中,被稱為一個集合(Collenction)。每個 集合在數(shù)據(jù)庫中都有一個唯一的標(biāo)識名,并且可以包含無限數(shù)目的文檔。集合的概念類似關(guān)系型數(shù)據(jù)庫(RDBMS)里的表(table),不同的是它不需要定 義任何模式(schema)。

      ◆ 模式自由

      模式自由(schema-free),意味著對于存儲在mongodb數(shù)據(jù)庫中的文件,我們不需要知道它的任何結(jié)構(gòu)定義。如果需要的話,你完全可以把不同結(jié)構(gòu)的文件存儲在同一個數(shù)據(jù)庫里。

      ◆支持動態(tài)查詢

      ◆支持完全索引,包含內(nèi)部對象

      ◆支持查詢

      ◆支持復(fù)制和故障恢復(fù)

      ◆使用高效的二進制數(shù)據(jù)存儲,包括大型對象(如視頻等)

      ◆自動處理碎片,以支持云計算層次的擴展性

      ◆支持RUBY,PYTHON,JAVA,C++,PHP等多種語言

      ◆文件存儲格式為BSON(一種JSON的擴展)

      BSON(Binary Serialized document Format)存儲形式是指:存儲在集合中的文檔,被存儲為鍵-值對的形式。鍵用于唯一標(biāo)識一個文檔,為字符串類型,而值則可以是各種復(fù)雜的文件類型。

      ◆可通過網(wǎng)絡(luò)訪問

      MongoDB服務(wù)端可運行在Linux、Windows或OS X平臺,支持32位和64位應(yīng)用,默認端口為27017。推薦運行在64位平臺,因為MongoDB在32位模式運行時支持的最大文件尺寸為2GB。

      MongoDB把數(shù)據(jù)存儲在文件中(默認路徑為:/data/db),為提高效率使用內(nèi)存映射文件進行管理。

      Hypertable

      Hypertable是一個開源、高性能、可伸縮的數(shù)據(jù)庫,它采用與Google的Bigtable相似的模型。在過去數(shù)年中,Google為在PC集群 上運行的可伸縮計算基礎(chǔ)設(shè)施設(shè)計建造了三個關(guān)鍵部分。第一個關(guān)鍵的基礎(chǔ)設(shè)施是Google File System(GFS),這是一個高可用的文件系統(tǒng),提供了一個全局的命名空間。它通過跨機器(和跨機架)的文件數(shù)據(jù)復(fù)制來達到高可用性,并因此免受傳統(tǒng) 文件存儲系統(tǒng)無法避免的許多失敗的影響,比如電源、內(nèi)存和網(wǎng)絡(luò)端口等失敗。第二個基礎(chǔ)設(shè)施是名為Map-Reduce的計算框架,它與GFS緊密協(xié)作,幫 助處理收集到的海量數(shù)據(jù)。第三個基礎(chǔ)設(shè)施是Bigtable,它是傳統(tǒng)數(shù)據(jù)庫的替代。Bigtable讓你可以通過一些主鍵來組織海量數(shù)據(jù),并實現(xiàn)高效的 查詢。Hypertable是Bigtable的一個開源實現(xiàn),并且根據(jù)我們的想法進行了一些改進。

      Apache Cassandra

      Apache Cassandra是一套開源分布式Key-Value存儲系統(tǒng)。它最初由Facebook開發(fā),用于儲存特別大的數(shù)據(jù)。Facebook在使用此系統(tǒng)。

      主要特性:

      ◆ 分布式

      ◆ 基于column的結(jié)構(gòu)化

      ◆ 高伸展性

      Cassandra的主要特點就是它不是一個數(shù)據(jù)庫,而是由一堆數(shù)據(jù)庫節(jié)點共同構(gòu)成的一個分布式網(wǎng)絡(luò)服務(wù),對Cassandra 的一個寫操作,會被復(fù)制到其他節(jié)點上去,對Cassandra的讀操作,也會被路由到某個節(jié)點上面去讀取。對于一個Cassandra群集來說,擴展性能 是比較簡單的事情,只管在群集里面添加節(jié)點就可以了。

      Cassandra是一個混合型的非關(guān)系的數(shù)據(jù)庫,類似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 儲系統(tǒng))更豐富,但支持度卻不如文檔存儲MongoDB(介于關(guān)系數(shù)據(jù)庫和非關(guān)系數(shù)據(jù)庫之間的開源產(chǎn)品,是非關(guān)系數(shù)據(jù)庫當(dāng)中功能最豐富,最像關(guān)系數(shù)據(jù)庫 的。Cassandra最初由Facebook開發(fā),后轉(zhuǎn)變成了開源項目。它是一個網(wǎng)絡(luò)社交云計算方面理想的數(shù)據(jù)庫。以Amazon專有的完全分布式的Dynamo為基礎(chǔ),結(jié)合了Google BigTable基于列族(Column Family)的數(shù)據(jù)模型。P2P去中心化的存儲。很多方面都可以稱之為Dynamo 2.0。

      CouchDB

      所用語言: Erlang

      特點:DB一致性,易于使用

      使用許可: Apache

      協(xié)議: HTTP/REST

      雙向數(shù)據(jù)復(fù)制,持續(xù)進行或臨時處理,處理時帶沖突檢查,因此,采用的是master-master復(fù)制

      MVCC – 寫操作不阻塞讀操作

      可保存文件之前的版本

      Crash-only(可靠的)設(shè)計

      需要不時地進行數(shù)據(jù)壓縮

      視圖:嵌入式 映射/減少

      格式化視圖:列表顯示

      支持進行服務(wù)器端文檔驗證

      支持認證

      根據(jù)變化實時更新

      支持附件處理

      因此, CouchApps(獨立的 js應(yīng)用程序)

      需要 jQuery程序庫

      最佳應(yīng)用場景:適用于數(shù)據(jù)變化較少,執(zhí)行預(yù)定義查詢,進行數(shù)據(jù)統(tǒng)計的應(yīng)用程序。適用于需要提供數(shù)據(jù)版本支持的應(yīng)用程序。

      例如:CRM、CMS系統(tǒng)。 master-master復(fù)制對于多站點部署是非常有用的。

      和其他數(shù)據(jù)庫比較,其突出特點是:

      ◆ 模式靈活 :使用Cassandra,像文檔存儲,你不必提前解決記錄中的字段。你可以在系統(tǒng)運行時隨意的添加或移除字段。這是一個驚人的效率提升,特別是在大型部 署上。

      ◆ 真正的可擴展性 :Cassandra是純粹意義上的水平擴展。為給集群添加更多容量,可以指向另一臺電腦。你不必重啟任何進程,改變應(yīng)用查詢,或手動遷移任何數(shù)據(jù)。

      ◆ 多數(shù)據(jù)中心識別 :你可以調(diào)整你的節(jié)點布局來避免某一個數(shù)據(jù)中心起火,一個備用的數(shù)據(jù)中心將至少有每條記錄的完全復(fù)制。

      ◆ 范圍查詢 :如果你不喜歡全部的鍵值查詢,則可以設(shè)置鍵的范圍來查詢。

      ◆ 列表數(shù)據(jù)結(jié)構(gòu) :在混合模式可以將超級列添加到5維。對于每個用戶的索引,這是非常方便的。

      ◆ 分布式寫操作 :有可以在任何地方任何時間集中讀或?qū)懭魏螖?shù)據(jù)。并且不會有任何單點失敗。

      問度娘,啥都有。

      如何選擇NoSQL數(shù)據(jù)庫

      NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的

      SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。

      NoSQL(NoSQL

      = Not Only SQL

      ),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關(guān)系型的數(shù)

      據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。

      從這一新興技術(shù)中選擇一款正確的NoSQL數(shù)據(jù)庫是非常具有挑戰(zhàn)性的。比一下網(wǎng)建議在選擇時考慮以下因素:

      并發(fā)控制

      發(fā)控制指的是當(dāng)多個用戶同時更新運行時,用于保護數(shù)據(jù)庫完整性的各種技術(shù)。并發(fā)機制不正確可能導(dǎo)致臟讀、幻讀和不可重復(fù)讀等此類問題。并發(fā)控制的目的是保

      證一個用戶的工作不會對另一個用戶的工作產(chǎn)生不合理的影響。在某些情況下,這些措施保證了當(dāng)用戶和其他用戶一起操作時,所得的結(jié)果和她單獨操作時的結(jié)果是

      一樣的。在另一些情況下,這表示用戶的工作按預(yù)定的方式受其他用戶的影響。

      封鎖

      就是事務(wù)T在對某個數(shù)據(jù)對象(例如表、記錄等)操作之前,先向系統(tǒng)發(fā)出請求,對其加鎖。加鎖后事務(wù)T就對該數(shù)據(jù)對象有了一定的控制,在事務(wù)T釋放它的鎖之前,其它的事務(wù)不能更新此數(shù)據(jù)對象。

      封鎖是一次只允許一個用戶讀取或修改的一種機制,是實現(xiàn)并發(fā)控制的一個非常重要的技術(shù)。

      MVCC

      Multi-Version Concurrency Control多版本并發(fā)控制,維持一個數(shù)據(jù)的多個版本使讀寫操作沒有沖突。MVCC優(yōu)化了數(shù)據(jù)庫并發(fā)系統(tǒng),使系統(tǒng)在有大量并發(fā)用戶時得到最高的性能,并且可以不用關(guān)閉服務(wù)器就直接進行熱備份。

      ACID

      數(shù)據(jù)庫事務(wù)正確執(zhí)行的四個基本要素的縮寫。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久

      性(Durability)。一個支持事務(wù)(Transaction)的數(shù)據(jù)庫系統(tǒng),必需要具有這四種特性,否則在事務(wù)過程(Transaction

      processing)當(dāng)中無法保證數(shù)據(jù)的正確性,交易過程極可能達不到交易方的要求。

      None

      一些系統(tǒng)不提供原子性。

      鏡像

      數(shù)據(jù)庫鏡像是DBMS根據(jù)DBA的要求,自動把整個數(shù)據(jù)庫或其中的關(guān)鍵數(shù)據(jù)復(fù)制到另一個磁盤上,每當(dāng)主數(shù)據(jù)庫更新時,DBMS會自動把更新后的數(shù)據(jù)復(fù)制過去,即DBMS自動保證鏡像數(shù)據(jù)與主數(shù)據(jù)的一致性。

      鏡像分為同步和異步。

      數(shù)據(jù)存儲

      指的是數(shù)據(jù)的物理特性怎樣被存儲在數(shù)據(jù)庫中。

      磁盤 數(shù)據(jù)被存儲在硬盤驅(qū)動器里;

      GFS或谷歌文件系統(tǒng)是一個由谷歌開發(fā)的專有的分布式文件系統(tǒng);

      Hadoop是Apache軟件框架,免費許可下支持數(shù)據(jù)密集型分布式應(yīng)用程序;

      RAM隨機存儲器;

      插件 可以添加外部插件;

      Amazon S3通過Web服務(wù)接口提供存儲;

      BDB:BDB

      全稱是 “Berkeley DB”,它是MySQL具有事務(wù)能力的表類型,由Sleepycat

      Software開發(fā)。BDB表類型提供了MySQL用戶長久期盼的功能,即事務(wù)控制能力。在任何RDBMS中,事務(wù)控制能力都是一種極其重要和寶貴的功

      能。事務(wù)控制能力使得我們能夠確保一組命令確實已經(jīng)全部執(zhí)行成功,或者確保當(dāng)任何一個命令出現(xiàn)錯誤時所有命令的執(zhí)行結(jié)果均被退回。

      實現(xiàn)語言

      實現(xiàn)語言會影響數(shù)據(jù)庫的發(fā)展速度。典型的NoSQL數(shù)據(jù)庫是用低級語言如C / C + +編寫的。另一方面,那些更高層次的語言如Java,使自定義更容易。

      實現(xiàn)語言有:C, C++, Erlang, Java, Python

      特性

      考慮下列哪一個特點對你的數(shù)據(jù)庫是最重要的:

      持久性

      可用性

      一致性

      分區(qū)容忍性

      證書類型

      下面這些許可證是一個不同的開放源碼許可的形式:

      GPL:通用公共許可證

      BSD:伯克利軟件分發(fā)

      MPL:Mozilla公共許可證

      EPL:Eclipse公共許可證

      IDPL:最初的開發(fā)者的公共許可證

      LGPL:較寬松通用公共許可證

      存儲類型

      存儲類型是NoSQL數(shù)據(jù)庫最大的不同,是決定使用哪款數(shù)據(jù)庫的一個首要指標(biāo)。

      關(guān)鍵字:支持get、put和刪除操作

      按列存儲:相對于傳統(tǒng)的按行存儲,數(shù)據(jù)集成容易多了

      面向文件系統(tǒng):存儲像是JSON或XML這樣的結(jié)構(gòu)化文件,很容易就能從面向?qū)ο筌浖蝎@取數(shù)據(jù)。

      NoSQL-HDFS-基本概念

      Hadoop

      文件系統(tǒng):文件系統(tǒng)是用來存儲和管理文件,并且提供文件的查詢、增加、刪除等操作。

      直觀上的體驗:在shell窗口輸入 ls 命令,就可以看到當(dāng)前目錄下的文件夾、文件。

      文件存儲在哪里?硬盤

      一臺只有250G硬盤的電腦,如果需要存儲500G的文件可以怎么辦?先將電腦硬盤擴容至少250G,再將文件分割成多塊,放到多塊硬盤上儲存。

      通過 hdfs dfs -ls 命令可以查看分布式文件系統(tǒng)中的文件,就像本地的ls命令一樣。

      HDFS在客戶端上提供了查詢、新增和刪除的指令,可以實現(xiàn)將分布在多臺機器上的文件系統(tǒng)進行統(tǒng)一的管理。

      在分布式文件系統(tǒng)中,一個大文件會被切分成塊,分別存儲到幾臺機器上。結(jié)合上文中提到的那個存儲500G大文件的那個例子,這500G的文件會按照一定的大小被切分成若干塊,然后分別存儲在若干臺機器上,然后提供統(tǒng)一的操作接口。

      看到這里,不少人可能會覺得,分布式文件系統(tǒng)不過如此,很簡單嘛。事實真的是這樣的么?

      潛在問題

      假如我有一個1000臺機器組成的分布式系統(tǒng),一臺機器每天出現(xiàn)故障的概率是0.1%,那么整個系統(tǒng)每天出現(xiàn)故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一個容錯機制來保證發(fā)生差錯時文件依然可以讀出,這里暫時先不展開介紹。

      如果要存儲PB級或者EB級的數(shù)據(jù),成千上萬臺機器組成的集群是很常見的,所以說分布式系統(tǒng)比單機系統(tǒng)要復(fù)雜得多呀。

      這是一張HDFS的架構(gòu)簡圖:

      client通過nameNode了解數(shù)據(jù)在哪些DataNode上,從而發(fā)起查詢。此外,不僅是查詢文件,寫入文件的時候也是先去請教NameNode,看看應(yīng)該往哪個DateNode中去寫。

      為了某一份數(shù)據(jù)只寫入到一個Datanode中,而這個Datanode因為某些原因出錯無法讀取的問題,需要通過冗余備份的方式來進行容錯處理。因此,HDFS在寫入一個數(shù)據(jù)塊的時候,不會僅僅寫入一個DataNode,而是會寫入到多個DataNode中,這樣,如果其中一個DataNode壞了,還可以從其余的DataNode中拿到數(shù)據(jù),保證了數(shù)據(jù)不丟失。

      實際上,每個數(shù)據(jù)塊在HDFS上都會保存多份,保存在不同的DataNode上。這種是犧牲一定存儲空間換取可靠性的做法。

      接下來我們來看一下完整的文件寫入的流程:

      大文件要寫入HDFS,client端根據(jù)配置將大文件分成固定大小的塊,然后再上傳到HDFS。

      讀取文件的流程:

      1、client詢問NameNode,我要讀取某個路徑下的文件,麻煩告訴我這個文件都在哪些DataNode上?

      2、NameNode回復(fù)client,這個路徑下的文件被切成了3塊,分別在DataNode1、DataNode3和DataNode4上

      3、client去找DataNode1、DataNode3和DataNode4,拿到3個文件塊,通過stream讀取并且整合起來

      文件寫入的流程:

      1、client先將文件分塊,然后詢問NameNode,我要寫入一個文件到某個路徑下,文件有3塊,應(yīng)該怎么寫?

      2、NameNode回復(fù)client,可以分別寫到DataNode1、DataNode2、DataNode3、DataNode4上,記住,每個塊重復(fù)寫3份,總共是9份

      3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把數(shù)據(jù)寫到他們上面

      出于容錯的考慮,每個數(shù)據(jù)塊有3個備份,但是3個備份快都直接由client端直接寫入勢必會帶來client端過重的寫入壓力,這個點是否有更好的解決方案呢?回憶一下mysql主備之間是通過binlog文件進行同步的,HDFS當(dāng)然也可以借鑒這個思想,數(shù)據(jù)其實只需要寫入到一個datanode上,然后由datanode之間相互進行備份同步,減少了client端的寫入壓力,那么至于是一個datanode寫入成功即成功,還是需要所有的參與備份的datanode返回寫入成功才算成功,是可靠性配置的策略,當(dāng)然這個設(shè)置會影響到數(shù)據(jù)寫入的吞吐率,我們可以看到可靠性和效率永遠是“魚和熊掌不可兼得”的。

      潛在問題

      NameNode確實會回放editlog,但是不是每次都從頭回放,它會先加載一個fsimage,這個文件是之前某一個時刻整個NameNode的文件元數(shù)據(jù)的內(nèi)存快照,然后再在這個基礎(chǔ)上回放editlog,完成后,會清空editlog,再把當(dāng)前文件元數(shù)據(jù)的內(nèi)存狀態(tài)寫入fsimage,方便下一次加載。

      這樣,全量回放就變成了增量回放,但是如果NameNode長時間未重啟過,editlog依然會比較大,恢復(fù)的時間依然比較長,這個問題怎么解呢?

      SecondNameNode是一個NameNode內(nèi)的定時任務(wù)線程,它會定期地將editlog寫入fsimage,然后情況原來的editlog,從而保證editlog的文件大小維持在一定大小。

      NameNode掛了, SecondNameNode并不能替代NameNode,所以如果集群中只有一個NameNode,它掛了,整個系統(tǒng)就掛了。hadoop2.x之前,整個集群只能有一個NameNode,是有可能發(fā)生單點故障的,所以hadoop1.x有本身的不穩(wěn)定性。但是hadoop2.x之后,我們可以在集群中配置多個NameNode,就不會有這個問題了,但是配置多個NameNode,需要注意的地方就更多了,系統(tǒng)就更加復(fù)雜了。

      俗話說“一山不容二虎”,兩個NameNode只能有一個是活躍狀態(tài)active,另一個是備份狀態(tài)standby,我們看一下兩個NameNode的架構(gòu)圖。

      兩個NameNode通過JournalNode實現(xiàn)同步editlog,保持狀態(tài)一致可以相互替換。

      因為active的NameNode掛了之后,standby的NameNode要馬上接替它,所以它們的數(shù)據(jù)要時刻保持一致,在寫入數(shù)據(jù)的時候,兩個NameNode內(nèi)存中都要記錄數(shù)據(jù)的元信息,并保持一致。這個JournalNode就是用來在兩個NameNode中同步數(shù)據(jù)的,并且standby NameNode實現(xiàn)了SecondNameNode的功能。

      進行數(shù)據(jù)同步操作的過程如下:

      active NameNode有操作之后,它的editlog會被記錄到JournalNode中,standby NameNode會從JournalNode中讀取到變化并進行同步,同時standby NameNode會監(jiān)聽記錄的變化。這樣做的話就是實時同步了,并且standby NameNode就實現(xiàn)了SecondNameNode的功能。

      優(yōu)點:

      缺點:


      本文標(biāo)題:nosql重復(fù)判斷,nosql最終一致性
      網(wǎng)站URL:http://www.ef60e0e.cn/article/hojjie.html
      99热在线精品一区二区三区_国产伦精品一区二区三区女破破_亚洲一区二区三区无码_精品国产欧美日韩另类一区
      1. <ul id="0c1fb"></ul>

        <noscript id="0c1fb"><video id="0c1fb"></video></noscript>
        <noscript id="0c1fb"><listing id="0c1fb"><thead id="0c1fb"></thead></listing></noscript>

        永登县| 肃宁县| 武定县| 中山市| 阿坝| 凤台县| 定南县| 新余市| 南通市| 邳州市| 内黄县| 漳州市| 绥化市| 黄大仙区| 广安市| 柘城县| 平山县| 江津市| 抚顺市| 禄丰县| 六盘水市| 包头市| 资源县| 石嘴山市| 建湖县| 兰西县| 怀宁县| 时尚| 阳东县| 内江市| 八宿县| 承德市| 遵化市| 望谟县| 布拖县| 荥经县| 义乌市| 德兴市| 称多县| 平和县| 会理县|